

SERIES INFORMATION

RAILWAY / ENERGY

Table of Contents

General information
Standard
Operating principle
Characteristic mans 6
2950 rpm 50 Hz 6 3500 rpm 60 Hz 7
2950 rpm 50 Hz 6 3500 rpm 60 Hz 7 Benefits 8

Documentation and tests 11
Collective measurements 12 LC32-160 cable 13
Modular14Options14
Individual adaptations 15
Contact 16

Table of ContentsGeneral informationStandardOperating principleCharacteristic mapsBenefitsTechnical dataDocumentation and testsCollective measurementsModularIndividual adaptations

Information

Applications

To cool inverters in applications such as transport and wind turbines demanding long service life and weight benefits.

Most frequently used pumped medium

A water-glycol mixture is used as the pumped medium in most cases. However, it is also possible to use alternative non-explosive media.

Directives

The LC series has been designed according to Standard CLC/TS 50537-3 for railway applications. This is also reflected in optimum corrosion protection and highest fire protection according to EN 45545-2.

Type / design

Horizontal, volute casing pumps without shaft seal in process design with fully enclosed, single-stage and single-flow canned motor. The connection dimensions of the housing correspond to SAE 2" according to ISO 6162-1.

Drive

The rotor lining – one of our core competencies – is manufactured by impact extrusion and, as a stainless steel alloy, is an essential component of the highly efficient canned motor. The liquid-filled canned motor accelerates to operating speed within seconds and operates wear-free and maintenance-free in continuous operation due to the hydrodynamic plain bearings. The canned motor is low-noise and low-vibration and offers double security against leakage.

Standard:	proven standard products available at short notice
Modular:	flexible modular system with limited choice
Customisation:	individual adaptations according to customer requirements

Operating data

	LC32-125	LC32-160
Pump capacity [Q]:	up to 15.9 m³/h up to 266 l/min	up to 19.2 m³/h up to 320 l/min
Pumping head [H]:	up to 25 m	up to 38 m
Motor output:	1.8 kW (optional 1.0 kW)	3.0 kW
Nominal pressure:	10 bar	10 bar
Operating temperature [t]: –40°C to +80°C	–40 °C to +80 °C

(extended performance range available on request)

Pump and hydraulics designations

Hermetic

Table of Contents

General information

Standard

Operating principle

Characteristic maps

Benefits

Technical data

Documentation and tests

Collective measurements

Modular

Individual adaptations

How the LC pump works

To cool the motor and lubricate the plain bearings, part of the flow is branched off at the periphery of the impeller and, after flowing through the motor, returned to the suction side of the impeller through the hollow shaft. This design is suitable for pumping non-critical liquids with low vapour pressure.

Partial flow return to the suction side

Table of Contents

General information

Standard

Operating principle

Characteristic maps

Benefits

Technical data

Documentation and tests

Collective measurements

Modular

Individual adaptations

Bearings

The hermetically sealed design requires the arrangement of bearings in the pumped liquid. Therefore, only hydrodynamic plain bearings are used in HERMETIC pumps. With correct operational mode, these bearings have the advantage that there is no contact between the bearing sliding surfaces. As a result, they are wear-free and maintenance-free in continuous operation. A service life of 20 years is common for hermetically sealed pumps.

In refrigeration engineering, carbon graphite is used as the bearing bush material that can withstand particularly high radial and axial loads. In addition, the material has a high resistance to elevated and low temperatures and high fatigue strength.

Table of Contents General information Standard **Operating principle** Characteristic maps Benefits Technical data Documentation and tests Collective measurements Modular Individual adaptations

CHARACTERISTIC MAPS

2950 rpm 50 Hz

 \checkmark

June

LEDERLE

Table of Contents

र् Hermetic

CHARACTERISTIC MAPS

3500 rpm 60 Hz

7

Hermetic

Table of Contents

Benefits of the canned motor type LC

Approximately 20% weight saving compared to conventional construction

Attractive prices and low life-cycle costs due to long service life

Mean Time Between Failures (MTBF) is more than 130,000 hours

Fast development to meet individual customer requirements

Hermetically sealed system without media loss

ZART[®] system for longevity of hydrodynamic bearings

Extremely compact

Horizontal and vertical mounting as well as 90° versions

Among other things vibration tests according to EN 61373

Highest corrosion and fire protection

Table of Contents

General information

Standard

Operating principle

Characteristic maps

Benefits

Technical data

Documentation and tests

Collective measurements

Modular

Individual adaptations

Benefits of the canned motor type LC

Hermetic

Table of Contents

Technical data

Canned motor data	LC32-125	LC32-160
Nominal pressure	10 bar	10 bar
Operating temperature	-40 °C to +80 °C	-40 °C to +80 °C
Weight	37 kg	42 kg
Impeller diameter	100 mm to 139 mm	100 mm to 169 mm
Noise level (50Hz / 60Hz)	< 61 dB / < 64 dB	< 65 dB / < 68 dB

General characteristics	LC32-125	LC32-160
Output power P2	max. 1.8 kW (optional 1.0 kW)	max. 3.0 kW
Speed	1,450 rpm to 3,500 rpm	1,450 rpm to 3,500 rpm
Operating mode	S1 according to EN 60034-1	S1 according to EN 60034-1
Type of protection (motor)	IP 66	IP 66
Motor protection in winding	PTC thermistor KL180	PTC thermistor KL180

Paintwork	LC32-125	LC32-160
Corrosion protection (paintwork)	up to C5	up to C5
Fire protection (paintwork)	R1 and R7 for HL1, HL2 and HL3	R1 and R7 for HL1, HL2 and HL3
Colour	RAL 7021 (black grey)	RAL 7021 (black grey)
Paint thickness	40 µm to 200 µm (various options)	40 µm to 200 µm (various options)

Hermetic

Table of Contents General information Standard Operating principle Characteristic maps Benefits **Technical data** Documentation and tests Collective measurements Modular Individual adaptations

 \searrow

DOCUMENTATION AND TESTS

Documentation and tests

		General information
Documentation according to HERMETIC Standard, consisting of:	Warranty	Standard
Operating manual for the HERMETIC pump	30 months from delivery	Operating principle
Technical specifications	Standard tests	Characteristic maps
Characteristic curve of the pump	Hydrostatic pressure test with 1.5x nominal pressure	– Benefits
Sectional drawing	Balancing of shaft and impeller according to DIN ISO 1940, 6.3	– Technical data
Parts list	- Leak test of the complete pump	Documentation and tests
Dimensional drawing	Functional test	- Collective measurements
Cable connection diagram		
Plain bearing play	Additional test	Modular
EU Declaration of Conformity	Shock and vibration tests according to EN 61373	Individual adaptations
,	Fire protection test according to EN 45545-2	Contact

Table of Contents

11

COLLECTIVE MEASUREMENTS

LC32-125 cable

Table of Contents General information

Standard

Operating principle

Characteristic maps

Benefits

140

115

Technical data

Documentation and tests

Collective measurements

Modular

Individual adaptations

Contact

 \sim

COLLECTIVE MEASUREMENTS

LC32-160 cable

Table of Contents General information

Standard

Operating principle

Characteristic maps

Benefits

160

125

Technical data

Documentation and tests

Collective measurements

Modular

Individual adaptations

Contact

 \sim

Options

LEDERLE

Table of Contents

ermetic

Individual adaptations according to customer requirements

Do you need a modified LC pump? We can adapt our pumps for you quickly and cost-effectively.

In this case, please contact our technical support: <u>lc-support@hermetic-pumpen.com</u>

15

EDERLE

Table of Contents

series information

lc-support@hermetic-pumpen.com

www.hermetic-pumpen.com

Table of Contents General information Standard Operating principle Characteristic maps Benefits Technical data Documentation and tests Collective measurements

Modular

Individual adaptations

Contact

Series Information LC / EN / 01 / 2020 All information in this document conforms to the latest specifications at the time of printing. We reserve the right to make technical improvements and changes at any time.